BORYS GRINCHENKO KYIV UNIVERSITY

«APPROVED»

Decision of the Academic Council, Borys Grinchenko Kyiv University

23 March 2017, Protocol No. 3

The Head of the Academic Council, Rector
Victor Ogneviuk

Programme of Study (Vocational)
 111.00.02 Mathematical modeling

Level Two (Master) of higher education

Field of Knowledge:
Specialty:
Qualifications:

11 Mathematics and Statistics
111 Mathematics
Master of Mathematics

LETTER OF APPROVAL Programme of Study (Vocational)

The Chair of Information Technologies and Mathematics
Protocol No 1, 10 January 2017
The Head of the Chair
\qquad Oksana Lytvyn
(signature)

The Academic Council of the Faculty of Information Technologies and
Management
Protocol No 6, 15 March 2017
The Head of the Academic Council___ Alla Mykhatska

The Head of the SMC of Standardization and Quality Education \qquad Olha Leontieva 23 March 2017

Vice-Rector on Academic Affairs \qquad Oleksii Zhyltsov 23 March 2017

PREAMBLE

The programme of study (vocational) complies with the Law of Ukraine "On Higher Education" and the Draft of the Standard for Higher Education of Ukraine in the field of knowledge 111 Mathematics for Level Two (Master) of higher education by the project group:

The head of the project group - Proshkin, Volodymyr, Ph.D. in Pedagogics, Associate Professor, Professor of the Chair of Information Technologies and Mathematics in Borys Grinchenko Kyiv University.

The members of the project group:
Astafieva, Maria, Candidate of physical and mathematical sciences, Associate Professor, Associate Professor of the Chair of Information Technologies and Mathematics in Borys Grinchenko Kyiv University.

Molchanov, Ihor, Ph.D. in physical and mathematical sciences, Professor, Professor of the Chair of Information Technologies and Mathematics

External Reviewers:

Liashko, Serhii, Corresponding Member of the National Academy of Sciences of Ukraine, Ph.D. in physical and mathematical sciences, Professor, the Head of the Chair of Computational Mathematics, Taras Shevchenko National University of Kyiv

Chernei, Ruslan, Candidate of physical and mathematical sciences, Associate Professor, Associate Professor of the Chair of Mathematics, National University of Kyiv-Mohyla Academy

Programme of Study (Vocational) was introduced on 1 September 2017
The term of Vocational revision \qquad time for \qquad years

Actualized:

Date of Review of the PS/Amendments to PS	$\mathbf{2 5 . 0 4 . 2 0 1 9}$		
Signature:			
PS Guarantor			

I. Profile of the Programme of study (Vocational) 111 Mathematics

1-General information	
The full name of the higher education institution and the structural unit	Borys Grinchenko Kyiv University Faculty of Information Technologies and Management
Degree of higher education and name of qualification	Degree: Master Qualification: Master in mathematics
Official name of the programme of study	111.00 .02 - Mathematical modeling
Type of diploma and term of study according to the programme	90 credits ECTS Master degree, unitary term of study: 1 year 4 months
Availability of accreditation	Accredited in 2017 (the decision of Accreditation Commission of Ukraine from 27 December 2018, Protocol No 133)
Cycle / Level	Level Two (Master)/ FQ-EHEA - cycle two, EQF LLL - level 7, HPK - level 8
The education level required to commence study under the programme	Level One (Bachelor) of higher education
Language (s) of teaching	Ukrainian
Validity of the programme of study	2022 Internet address of the permanent placement of the description of the programme of studyhttp://kubg.edu.ua 2 - The purpose of the programme of study (vocational) To provide students with profound training in the field of Mathematics, emphasised on modern mathematical theories and methods that have wide application in different fields of science and practice, mastering the basics and methods of mathematical modeling; to provide knowledge and form the appropriate competencies for further education, Sevelopment of research skills, independent pedagogical work on the corresponding profile
$\mathbf{3 - C h a r a c t e r i s t i c s ~ o f ~ t h e ~ p r o g r a m m e ~ o f ~ s t u d y ~}$	
- Objects of study and /or activity: mathematical structures,	
concepts, and ideas for modeling and development of theory in	

	order to explain and/or optimize natural-technological or socio- economic phenomenons. - Learning objectives: formation of complex knowledge and skills for use in professional activities in the field of mathematics, development of mathematical theories, mathematical modeling, analysis and solution of applied problems. - The theoretical content of the subject area: mathematical models allow analyzing and processing the data of scientific, natural, technical, economic, sociological research, build the basis of scientific and educational activities in the field of mathematics and statistics and contribute to the development and creation of new information technologies. - Methods, techniques, and technologies: the applicant of higher education must master the methods of mathematical modeling, information, software and communication technologies; the skills of scientific and production, design, organizational and management activities; the ability to pedagogical and educational activities in the field of mathematics and statistics.
Instruments and equipment: computer and network	
programmable devices.	
The proportion of the volumes of the general and professional	
components and optional parts: 3:1	
Field practice share: 13.5 ECTS credits (15\%)	

	$\begin{array}{l}\text { mathematical modeling, forecasting; financial institutions, } \\ \text { insurance companies, statistical offices, IT companies, audit } \\ \text { firms, industrial enterprises, public service institutions in } \\ \text { positions related to analysis and forecasting, optimization and } \\ \text { rationalization, operations research) }\end{array}$
Further training	$\begin{array}{l}\text { The possibility of obtaining an education at the third } \\ \text { (educational and scientific) level in the field of mathematics, } \\ \text { applied mathematics, computer science, and related sciences }\end{array}$
$\begin{array}{l}\text { Teaching and } \\ \text { learning }\end{array}$	$\begin{array}{l}\text { Based on the principles of student-centered and personal approach; } \\ \text { implemented through training based on research, strengthening of } \\ \text { practical and creative orientation in the form of a combination of }\end{array}$
lectures, practical training, self-study and research using elements	
of distance learning, the solution of applied problems, the	
implementation of projects, industrial practices, training and	
protection of qualification master's work	

evaluation of students for all types of classroom and

extracurricular educational activity (current, modular, final

control); modular control works, individual calculation and

design works, testing, tests, practice reports, exams, certification\end{array}\right\}\)

	development of the team in the process of the professional activity. GC-5 Coordination with others. Ability and willingness to carry out collective projects, to take responsibility for the work of a particular group; ability to lead a discussion, defending one's point of view. GC-6 Communication. Ability to written and oral communication in Ukrainian language and at least in one of the common European languages; ability to speak clearly, to be convincing; skills of interpersonal relations; skills of effective use of modern communication technologies. GC-7 Emotional intelligence. Awareness of one's own emotional state, self-control, and self-regulation; self-respect and confidence; ability to overcome difficulties, stress resistance; optimistic attitude, initiative, being determined to obtain positive result. GC-8 Cognitive flexibility. The ability to acquire new knowledge, skills and to integrate them with possessed ones; the ability to analyze the phenomenon, situation, problem, taking into account different options, factors, and causes; the ability to adapt thinking for solving problems in changed conditions or unusual situations. GC-9 Focus on high results. The need to deliver quality work; ability to plan the stages and progress of work, to assess and ensure the quality of work performed, to present the results and justify the proposed solution in a modern technical, scientific and professional level. GC-10 The judgments wording and decision-making. Ability to orient in various views of the problem and its solutions, to form own opinion; to be able to formulate the problem, to choose the optimal solutions, to analyze and comprehend the optimal decision, and to present it convincingly. GC-11 Information and ICT literacy. The ability to search, process and analyse necessary information from various sources, in order to find the solution for educational, scientific and professional tasks, in compliance with ethical and legal standards; skills in the use of information and communication, computer technologies as a tool for knowledge and skills acquisition, as well as the presentation of problems, challenges, and results, etc.
Professional competence (PC)	PC-1 Knowledge and understanding. Specialized conceptual knowledge acquired in the learning process at the level of the latest achievements, which are the basis for original thinking, research and/or innovation; the ability to use the acquired knowledge in practical professional activities.

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { PC-2 Research skills. Ability to understand the essence of the } \\ \text { problem, the task statement, to choose and use appropriate methods } \\ \text { and organizational procedures for its solution (resolution), research } \\ \text { or innovative activity, to evaluate the results critically, to determine } \\ \text { the prospects for further development of the studied and related } \\ \text { topics. } \\ \text { PC-3 Solution to the problems. Ability to think critically and to } \\ \text { solve complex tasks and problems that require interdisciplinary } \\ \text { approaches, updating, and integration of knowledge, often in the } \\ \text { context of incomplete/insufficient information and conflicting } \\ \text { requirements. } \\ \text { PC-4 Modeling. The ability to transfer mathematical knowledge } \\ \text { in non-mathematical contexts, to develop adequate mathematical } \\ \text { models of real processes and phenomenons, to study them by } \\ \text { choosing appropriate methods, including computer, and interpret } \\ \text { the results of the study in terms of the researched process } \\ \text { (phenomenon). } \\ \text { PC-5 Information competence. Ability and willingness for the } \\ \text { effective use of knowledge and skills and application of modern } \\ \text { means of information and computer technologies applied } \\ \text { programmes and programme packages for the solution of }\end{array} \\ \text { mathematical and applied problems and other professional } \\ \text { purposes. } \\ \text { PC-6 Creativity and innovation. Ability to independently develop } \\ \text { projects through creative application of existing and/or generation } \\ \text { of new mathematical ideas; ability to develop new and/or improve } \\ \text { existing mathematical methods of analysis, modeling, forecasting, } \\ \text { solving new problems in new fields of knowledge. } \\ \text { PC-7 Communication. The ability to submit mathematical } \\ \text { reasonings and conclusions in a form suitable for the target } \\ \text { audience, both orally and in writing, as well as to understand the } \\ \text { mathematical considerations of other persons involved in solving } \\ \text { the same problem. } \\ \text { PC-8 Self-education and further training. Ability to self- } \\ \text { education and professional development in the field of } \\ \text { mathematics, didactics, educational technologies based on } \\ \text { innovative approaches. } \\ \text { PC-9 Teaching skills. The possession of the didactic knowledge } \\ \text { of the processes and methods of teaching and learning } \\ \text { mathematics, awareness of the latest educational technologies } \\ \text { and the ability to use them in practical teaching. } \\ \mathbf{7}-\mathbf{P r o g r a m m e ~ l e a r n i n g ~ o u t c o m e s ~ (P L O) ~} \\ \mathbf{P L O - K - 1 ~ D e m o n s t r a t e ~ a t ~ t h e ~ l e v e l ~ o f ~ a p p l i c a t i o n ~ a ~ t h o r o u g h ~} \\ \text { knowledge of the basic conceptions and facts of linear algebra and }\end{array}\right\}$
\(\left.\begin{array}{|l}\hline

matrix theory, analytical and differential geometry, differential and

integral calculus of the function of real and complex variables, real

variables, series theory, differentials, logic and set theory, discrete

mathematics, probability theory and mathematical statistics, as well as

reproduce the knowledge of certain special sections of higher and

applied mathematics (applied functional analysis, theory of dynamic

systems, algebraic topology) in the volume, necessary for the

possession of the mathematical apparatus of the relevant field of

knowledge and the use of mathematical methods in the chosen

profession.

PLO-K-2 Know the basics of mathematical disciplines and

theories that study models of natural, economic, and social

processes.

PLO-K-3 Know and understand mathematical methods of

analysis, forecasting, and evaluation of model parameters, basic

approaches of transforming a mathematical model into a

computer one, qualitative and quantitative study of a constructed

model, analysis and interpretation of the results received during

modeling.

PLO-K-4 Demonstrate the knowledge and understanding of the

connections of some parts of theoretical and applied mathematics

with economic processes and theories for constructing effective

economic models.

PLO-K-5 Understand and explain the place of mathematics in

science in general and in the philosophical systems of philosophers

(Plato, Aristotle, Descartes, Leibniz, Kant), the nature of mathematical

knowledge, the structure of mathematical knowledge, the reason for

its effectiveness in other fields; know and understand the fundamental

and applied aspects of science in mathematics.

PLO-K-6 Know and understand the limits of applicability of\end{array}\right\}\)| various mathematical theories, methods, tools. |
| :--- |
| PLO-K-7 Possess the basics of psychological and pedagogical |
| disciplines, the knowledge of didactics and methods of teaching |
| mathematics to the extent necessary for professional teaching in |
| high school. |
| $\mathbf{P L O - K - 8 ~ H a v e ~ k n o w l e d g e ~ o f ~ b u i l d i n g ~ c o m p e t e n t ~}$ |
| communication in the educational and scientific process, |
| professional activity. |
| PLO-S-1 Carry out logical reasoning, build a proof of |
| mathematical facts competently by using classical methods of |
| proving (from the opposite, mathematical induction, constructive |
| method, etc.). |

PLO-S-2 Read and understand the fundamental sections of mathematical literature and demonstrate mastery of their reproduction in a reasoned oral and/or written report.
PLO-S-3 Demonstrate the ability to use fundamental mathematical laws in solving theoretical and applied mathematical problems and problems that require, in particular, the integration of acquired knowledge, methods from various branches of mathematics, including multi-criteria problems and problems with incomplete data.
PLO-S-4 Recognize mathematical structures in other (nonmathematical) theories; translate problems from other fields into the language of mathematics and solve them by methods of mathematical modeling.
PLO-S-5 Communicate professional knowledge, own justifications, and conclusions to experts and the general public; orally and in writing to communicate in native and foreign languages in scientific, industrial and social spheres of activity with professional issues.
PLO-S-6 Demonstrate certain research skills, the ability to solve a task/problem, to perform an innovative task (work planning, research, finding solutions/obtaining results, formulation of conclusions, and presentation of results) independently or under the guidance of a specialist (teacher, researcher or professional practitioner).
PLO-S-7 Apply computer technologies, applied mathematical packages, other software products, information resources for the solution of mathematical problems, modeling, analysis of models, for other professional purposes.
PLO-S-8 Apply new approaches to develop a strategy for decision-making in complex unpredictable conditions.
PLO-S-9 Have the ability to organize collective activities and implement complex projects, taking into account available resources and time constraints.
PLO-S-10 Be aware of the limitations of one's own knowledge and the need for continuous training, to demonstrate the ability of rational ways to independently search for sources of information on a certain range of issues, including foreign languages, to analyze the found information, to replenish their knowledge and acquire skills.
PLO-S-11 Demonstrate the ability to apply the latest educational technologies in professional activities, willingness, and ability to learn from positive experience, to improve teaching skills through self-education.
PLO-S-12 Demonstrate the ability to work in a team, acting ethically and responsibly.

	PLO-S-13 Be able to formulate a mathematical / pedagogical problem, to find and analyze the correspondence between the task and the existing models, to choose the optimal solutions, to analyze and comprehend the obtained solution, to present the results of the work and to justify the proposed solutions at the modern scientific, technical and professional level
8 - Resource support for the implementation of the programme	
Personnel support	The head of the project group and the teaching staff, which ensures its implementation, meets the requirements defined by the License conditions for the implementation of educational activities of educational institutions. Personnel support of the educational program consists of the faculty of the Department of information technology and mathematics of the Faculty of information technology and management. The practice-oriented nature of the educational program involves wide participation of practitioners, corresponding to the direction of the program.
Material and technical support	Specially equipped with hardware and software, visual and methodological materials, computer classes and competence development centers, namely: center for living mathematics, laboratory of embedded systems and 3D-modeling, the center for modeling and programming, the center for educational technologies
Information and educationalmethodological support	Library electronic resources, electronic scientific publications, elearning courses with the possibility of distance learning and independent study, cloud services.
9 - Academic mobility	
National Credit Mobility	
International Credit Mobility	The regulation on the procedure of realization of the right to academic mobility of participants of the educational process of the University was put into effect by the order of 30.09.2016. The signing of agreements on student mobility with universities of European countries in the framework of the Erasmus + programme KA1. Among them: the University of Vilnius (Lithuania), University of Constantine the Philosopher in Nitra (Slovakia), University of Extremadura (Spain), University of Silesia in Katowice (Poland), Academy of Jan Dlugosz in Czestochowa (Poland), University of Ostrava (Czech Republic), University of Lisbon (Portugal) and others.
Studying of foreign higher education learners	According to the license, training of foreigners and stateless persons is provided

The List of the Components of the Programme of Study (vocational) Social Communications and Their Logical Coherence

1.1. The List of the Components of PS

Component Code	Components of the Programme of Study (academic discipline, practice, degree paper)	Credits ECTS	The Form of the Final Control
1	2	3	4
Formation of professional competencies			
I. Compulsory components of PS			
1. Educational disciplines			
ОДФ. 01	History and philosophy of mathematics	4	Exam
ОДФ. 02	Foreign language of professional direction	5	Credit
ОДФ. 03	Applied functional analysis	4	Exam
ОДФ. 04	Dynamic systems	5	Exam
ОДФ. 05	Mathematical modeling	8	Exam
	1. Fundamentals of mathematical modeling	2	Exam
	2. System analysis	3	
	3. Forecasting	3	
ОДФ. 6	Applied mathematics and computer modeling	14	Exam
	1. Economic and mathematical modeling	4	Exam
	2. Computer modeling of systems and processes	6	Exam
	3. Systems of computer mathematics	4	
ОДФ. 7	Teaching in Higher education	8	Exam
	1. Pedagogy and psychology of higher education	4	
	2. Methods of teaching mathematical disciplines	4	
The total amount of the theoretical components		48	-
2. Practice			
ОП. 1	Internship (assistant)	6	Credit
ОП. 2	Undergraduate (in mathematics)	7,5	Credit
The total amount of practice		13,5	-
3. Attestation			
OA. 1	Qualification degree paper	6	
	1. Preparation of the degree paper	4,5	
	2. Degree paper defense	1,5	
The total amount of certification		6	-
The total amount of the compulsory components		67,5	
II. Optional components			
ВД 1.01	free choice academic disciplines from the course catalogue	22,5	Credits
The total amount of the optional components		22,5	
THE TOTAL AMOUNT OF THE PROGRAMME OF STUDY		90	

1.2. Structural-logical scheme of PS

Semester 1 30 credits ECTS	Semester 2 34,5 credits ECTS	Semester 3 22,5 credits ECTS
History and philosophy of mathematics 4 credits ECTS	Applied mathematics and computer modelling 14 credits ECTS	Free choice academic disciplines from the course catalogue 10,5 credits ECTS
Foreign language of professional direction 5 credits ECTS	Economic and mathematical modelling 4 credits ECTS	Internship (assistant) 6 credits ECTS
Applied functional analysis 4 credits ECTS	Computer modeling of systems and processes 6 credits ECTS	Undergraduate practice (in mathematics) 7,5 credits ECTS
Dynamic systems 5 credits ECTS	Systems of computer mathematics 4 credits ECTS	Attestation (1,5 credits ECTS): Degree paper defense
Mathematical modeling 8 credits ECTS	Teaching in Higher education 7 credits ECTS	
Fundamentals of mathematical modeling 2 credits ECTS	Pedagogy and psychology of higher education 3 credits ECTS	
System analysis 3 credits ECTS	Methods of teaching mathematical disciplines 4 credits ECTS	
Forecasting 3 credits ECTS	Free choice academic disciplines from the course catalogue 12 credits ECTS	
	Preparation of the degree paper 4.5 credits ECTS	

II. Form of Attestation of Higher Educational Learners

The graduate students majoring in 111 Mathematics get attestation in the form of degree paper defense, and they are given the document of the state standard issued
to confirm that they are awarded the degree and educational qualification of Master of Mathematics.

The attestation is performed openly and publicly.
III. Matrix of the Programme Competence Compliance with the Programme

Components

	$\begin{aligned} & \ddot{\theta} \\ & \dot{\theta} \\ & \hline 0 \end{aligned}$	$\frac{\dot{\theta}_{0}^{\prime}}{\theta_{0}^{\prime}} N$	$\stackrel{\theta}{\dot{\theta}}_{0}^{\infty}$	$\frac{\ddot{\theta}}{\underset{0}{0}}+$	$\begin{aligned} & \dot{\theta} \\ & \theta_{0}^{1} \end{aligned}$	$\dot{\theta}_{0}^{0}$	$\frac{\ddot{\theta}}{0}$	E	$\stackrel{\text { Y }}{\substack{0}}$	E	$\underset{\sim}{\sim}$
GC1			\bullet								
GC2	\bullet		\bullet								
GC3	\bullet		\bullet								
GC4						\bullet	\bullet	\bullet	\bullet		
GC5							\bullet	\bullet	\bullet		
GC6		\bullet					-	\bullet	\bullet		
GC7							-	-			
GC8			\bullet	\bullet	\bullet	\bullet					-
GC9							\bullet	\bullet	\bullet	\bullet	
GC10					\bullet			\bullet	\bullet	\bullet	
GC11						\bullet				\bullet	
PC1			\bullet	\bullet	\bullet		\bullet			\bullet	
PC2					\bullet				\bullet	\bullet	-
PC3			\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	
PC4			\bullet	-	\bullet	\bullet			\bullet	\bullet	
PC5						\bullet			\bullet	\bullet	
PC6					\bullet			\bullet	\bullet	-	
PC7	\bullet	\bullet					\bullet	\bullet	\bullet		
PC8			\bullet								
PC9							\bullet	\bullet			

IV. Matrix of Providing Programme Learning Outcomes with the Relevant Programme Components

	$\begin{aligned} & \theta \\ & \frac{\ddot{\theta}}{0} \\ & \hline 0 \end{aligned}$	$\frac{\theta}{\theta}$	$\stackrel{\theta}{0}_{0}^{e}$	$\frac{\stackrel{e}{\theta}}{\frac{0}{0}}+$	$\frac{0}{e_{0}^{1}} 10$	$\begin{aligned} & \theta \\ & \frac{\ddot{\theta}}{0} \end{aligned}$	$\frac{0}{0}$	$\stackrel{\square}{6}$	ヘ̣	$\frac{3}{3}$	乐
PLO-K-1			-	\bullet	\bullet						
PLO-K-2				\bullet	\bullet	\bullet				-	\bullet
PLO-K-3			\bullet	\bullet	\bullet	-			\bullet	\bullet	
PLO-K-4					\bullet	-			-	-	-
PLO-K-5	-						-	-			
PLO-K-6			\bullet	\bullet		-			\bullet	-	
PLO-K-7							\bullet	\bullet		\bullet	
PLO-K-8		-					\bullet	\bullet			
PLO-S-1	-		-	-	-						-
PLO-S-2			\bullet	\bullet			-	\bullet		-	
PLO-S-3			\bullet	\bullet	-				\bullet	-	-
PLO-S-4					\bullet	\bullet			\bullet	-	
PLO-S-5		-					-	-			
PLO-S-6										\bullet	
PLO-S-7						\bullet			\bullet	\bullet	
PLO-S-8						-	\bullet	\bullet	\bullet	-	
PLO-S-9							\bullet	\bullet	\bullet		
PLO-S-10	-	-								-	
PLO-S-11							\bullet	\bullet			
PLO-S-12							\bullet	\bullet	\bullet		
PLO-S-13		\bullet	\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet	\bullet

